Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/ccop4710/spr2008

School of Electrical Engineering and Computer Science
University of Central Florida

COP 4710: Database Systems (Chapter 5 Page 1 Mark Llewellyn

[

Processing Multiple Tables — Joins

e JoIn — a relational operation that causes two or more tables with a
common domain to be combined into a single table or view

o Equi-join — a join in which the joining condition is based on equality
between values in the common columns; common columns appear
redundantly in the result table

 Natural join — an equi-join in which one of the duplicate columns is
eliminated in the result table

e Quter jOiﬂ — ajoin in which rows that do not have matching values in
common columns are nonetheless included in the result table (as opposed

to inner join, in which rows must have matching values in order to appear
In the result table)

e Union join — includes all columns from each table in the join, and an
instance for each row of each table

The common columns in joined tables are usually the primary key of the

dominant table and the foreign key of the dependent table in 1:M relationships—

p:
COP 4710: Database Systems (Chapter 5) Page 2 Mark Llewellyn @]

The following slides create tables for
this enterprise data model

CUSTOMER PRODUCT
Flaces Has
/ \ Is placed by / \ Is for
Contains 1 ORDER
ORDER Is containedin | LINE

COP 4710: Database Systems (Chapter 5) Page 3 Mark Llewellyn

FJ Microsofl Access

Ede
E-r-EdYy SRV

Edt wew [nsest Format Hecords

Iooks Window fHelp

s o |2 il e

M ek D@ @,

Type aquestion for help -

Order ID Omder Data | Customar D Customer ID Customer Name Customer Address
b+ “ 1001 1un§1,.rm| 1 — | Contemporary Casuals 1355 S Hines Bivd
. 1007 10/21 /2004 B * 2 Value Fumiture 15145 S W, 171h St
. 1003 10/22/2004| 15 + 3 Home Fumishings 1900 Allard Ave.
. 1004 102272004 5 4 Eastern Fumiture 1925 Beltline Rd.
. 1005 10/24,/2004| 3 5/ Imprassions 5535 Wastcoit C1.
* 1008 10/24,/2004| 2 6 Furniture Gallery 325 Flatiron Dr.
- 1007 1027 /2004 | 1 + 7| Period Furniture 394 Rainbow D
= 1008 10/30/2004 12 + ™~ g/ Califomnia Classics 815 Pasch Rd.
+ 1002 1152004 | 4 9 M and H Casual Furmniture 3709 First Street
* 1010 |1,5I.rm| 1 ¥ 1l]| Semincle Interiors 2400 Rocky Point Dr.
¥* 0 | 0 + — 1" I American Euro Lifestyles 2424 Missoun Ave N.
Record: I__ + 12 Batile Creek Furniture 345 Capitol Ave. W
I 1D L LIbk| of 10 * 13| Heritage Furnishings BEFES College Awve.
+ 14 Kaneohe Homes 112 Kiowai S1.
+ 15/ Mauntain Scenes 4132 Main Streat
#| (AutoNumben)

Recond: III-l" 1 Wk |kl |k¥|of 1S

[

COP 4710: Database Systems (Chapter 5)

Page 4

Mark Llewellyn

Natural Join Example

* For each customer who placed an order, what Is the
customer’s name and order number?

Join involves multiple tables in FROM clause

SELECT CUSTOMER T MER 1D, CUSTOMER_NAME, ORDER_ID

FROM CUSTOMER T, ORDER T

WHERIE CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID:

!

WHERE clause performs the
equality check for common
columns of the two tables

COP 4710: Database Systems (Chapter 5) Page 5 Mark Llewellyn

16 rows selected.

CUSTOMER_ID CUSTOMER_NAME ORDER_ID
1 Contemporary Casuals 1001
1 Contemporary Casuals 1010
2 Value Furniture 1006
3 Home Furnishings 1005
4 Eastern Furniture 1008
5 Impressions 1004
ReSU ItS B Furniture Gallery
7 Period Furnishings
8 California Classics 1002
9 M & H Casual Furniture
10 Seminole Interiors
11 American Euro Lifestyles 1007
12 Battle Creek Furniture 1008
13 Heritage Furnishings
14 Kaneohe Homes
1D Mountain Scenes 1003

COP 4710: Database Systems (Chapter 5) Page 6

Mark Llewellyn

Outer Join Example (Microsoft Syntax)

e List the customer name, ID number, and order number
for all customers. Include customer information even
for customers that do have an order

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME,
ORDER_ID

FROM CUSTOMER T, LEFT OUTER JOIN ORDER_T
ON CUSTOMER_T.$USTOMER_ID = ORDER_T.CUSTOMER_ID;

LEFT OUTER JOIN syntax with
ON keyword instead of WHERE
- —> causes customer data to appear

even if there is no corresponding
order data

COP 4710: Database Systems (Chapter 5) Page 7 Mark Llewellyn

Outer Join Example (Oracle Syntax)

e List the customer name, ID number, and order number for
all customers. Include customer information even for
customers that do have an order

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME, ORDER_ID
FROM CUSTOMER_T, ORDER_T
WHERE CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID(+);

Outer join in Oracle uses regular join /

syntax, but adds (+) symbol to the
side that will have the missing data

P
COP 4710: Database Systems (Chapter 5) Page 8 Mark Llewellyn §_ﬁ

Multiple Table Join Example

o Assemble all information necessary to create an invoice
for order number 1006

Four tables involved in this join

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME,
CUSTOMER_ADDRESS, CITY, SATE, POSTAL_CODE,
ORDER_T.ORDER_ID, ORDER_DATE, QUANTITY,
PRODUCT NAME, UNIT PRICE, (QUANTITY * UNIT PRICE)

FRO'\/I CUSTOMER_T, ORDER_T, ORDER_LINE_T, PRODUCT_T,|

ORDER_LINE.CUSTOMER_ID AND ORDER_T.ORDER_ID =

WHERE CUSTOMER_T.CUSTOMER_ID =
ORDER_LINE_T.ORDER ID

PRODUCT_PRODUCT_ID
AND ORDER_T.ORDER_ID = 1006;

Each pair of tables requires an equality-check condition in the WHERE clause,
matching primary keys against foreign keys

AND ORDER_LINE_T.PRODUCT_ID =
I

7
COP 4710: Database Systems (Chapter 5) Page 9 Mark Llewellyn @]

Results from a four-table join

From CUSTOMER T table

CUSTOMER_ CUSTOMER_ POSTAL_
CUSTOMER_ID CUSTOMER_NAME CUSTOMER_ADDRESS CITY ST CODE
Value Furniture 15145 S.W. 17th St. Plano TX 75004 7743
Value Furniture 15145 S.W. 17th St. Flano TX 75094 7743
Value Furniture 15145 S.W. 17th St. Plano TX 75004 7743
ORDERED_ (QUANTITY*
ORDER_ID ORDER_DATE QUANTITY PRODUCT_NAME STANDARD_PRICE STANDARD_PRICE)
1006 24-OCT-04 1 Entertainment Center 650 650
1006 24-0CT-04 2 Writer's Desk 325 650
1006 24-OCT-04 2 Dining Table 800 1600

From ORDER_T table

From PRODUCT T table

COP 4710: Database Systems (Chapter 5)

Page 10 Mark Llewellyn

&

Processing Multiple Tables Using Subqgueries

e Subquery - placing an Inner query (SELECT
statement) inside an outer query.

e Options:
— In a condition of the WHERE clause.

— As a “table” of the FROM clause.
— Within the HAVING clause.

e Subqueries can be:

— Noncorrelated — executed once for the entire outer query.

— Correlated — executed once for each row returned by the
outer query.

P
COP 4710: Database Systems (Chapter 5) Page 11 Mark Llewellyn @]

Subquery Example

« Show all customers who have placed an order.

The IN operator will test to see if the
CUSTOMER_ID value of arow is
included in the list returned from the
subquery
SELECT CUSTOMER_NAMEFROM CUSTOMER_T
WHERE CUSTOMER 1D IN

(SELECT DISTINCT CUSTOMER_ID FROM ORDER_T)

T

Subquery iIs embedded in
parentheses. In this case it
returns a list that will be used
in the WHERE clause of the
outer query

COP 4710: Database Systems (Chapter 5) Page 12 Mark Llewellyn ')j

Correlated vs. Noncorrelated Subgueries

* Noncorrelated subgueries:
— Do not depend on data from the outer query.
— Execute once for the entire outer query.

« Correlated subgueries:

— Make use of data from the outer query.
— EXxecute once for each row of the outer query.
— Can use the EXISTS operator.

P
COP 4710: Database Systems (Chapter 5) Page 13 Mark Llewellyn @]

SELECT CLSTOMER_MAME
FROM CUSTOMER_T
WHERE CUSTOMER_ID IM

Processing a

[SELECT DISTINCT CUSTOMER_ID

noncorrelated FROM ORDER_T)
SU bq uery 1. The subguery (shown in the box) is processaed first and an intermediate resulis table
crirabisd:
CUSTOMER 1D
! No reference to data
's in outer query, so
3
1. The subquery E subguery executes
executes and 12
n ni
returns the & rows mtectod B QUL
customer IDS from 2, _Thir outer query retums the requested customsr information tor aach customar mcludad
the ORDER_T table in the imemediate resulls tabls:
CUSTOMER_MAME
2. The outer query on TR
the results of the E;;:,:_‘,‘:Tr':‘;'uﬂ?f These are the only
subquery Imprassions customers that have

Amarican Euro Lifestdes IDS |n the ORDER_T

Batila Creek Fumiture
Mountan Sconos table

8 rows salacted,

COP 4710: Database Systems (Chapter 5) Page 14 Mark Llewellyn 0

Correlated Subquery Example

e Show all orders that include furniture finished in natural
ash

The EXISTS operator will return a
TRUE value if the subquery resulted
In a non-empty set, otherwise it
returns a FALSE
SELECT DISFINCT ORDER_ID FROM ORDER_LINE T
WHERH EXISTS
(SELECT * FROM PRODUCT T

WHERE PRODUCT ID[ORDER_LINE_T.PRODUCT_IE‘)
AND PRODUCT_FINISH = "Natural ash’); T

The subquery is testing for a value
that comes from the outer query

COP 4710: Database Systems (Chapter 5) Page 15 Mark Llewellyn

SELECT DISTINGCT ORDER _ID FROM ORDER _LINE _T

- WHERE EXISTS
Processing a (SELEGT g bt
FROM FRODUCT _T 3 o : i
WHERE PRODUCT ID = ORDER LINE TFPRODUCT 1D :] ";
corre I ated AND PRODUCT _FINISH = *Natural Ash'); i :
Subquery refers to outer- Mo]
subquery query I
query data, so executes once mo :
for each row of outer query iR :
| lelﬂ;_llli Pra ption| Product_Finish| Standard Price | Product_Line_d

El= En Char #i7s00 100m

[1+ 2—»TTuflee Table Gﬁb 20000 20001

Note: only the [|+ 4—= 3 C-:-m:l.n:r Desk Qﬁi $375.00 20001

+ 4 Erfedamment Cenler | Malural Maple A0 00 30001

Orders that : # 5 Whiter's Desk Cherry $32500 100

involve] B B-Drawer Cvesser Wi'hite Ash ¥Fs00o 200m

R 7 Dining Table eatural Ash ™ $E0000 20001

products with AE 8 Computer Desk Walnut $250000 30001

. | | [Aulohlymber) $¥0.00
Nat_u ral ASh WI” 1. The first order ID iz selected from ORDER _LIME _T: ORDER _ID =101,
be |nC|Uded In 2. The subguery is evaluated to see if any preduct m that order has a natural ash finish, Product 2 does, and

the final results

A, The next order 1DV is selected from ORDER _LIME _T: ORDER _ID =1002,

4, The subguery is evaluated to see if the product ordered has a natural ash finesh, |t does, EXISTS is valued
&5 true and the arder ID iz added 1o the result table,

5. Processzing continues through each crder ID. Orders 1004, 1008, and 1010 are not included in the result
table because they do not include any furniture with a natural ash finizh. The final result table iz shown in

the text on page 303,

iz part of the order. EXISTS s valued as true and the order |0 s added to the result table.

COP 4710: Database Systems (Chapter 5)

Page 16

Mark Llewellyn

Another Subguery Example

« Show all products whose price is higher than the average

One column of the subquery is an
Subquery forms the derived table used aggregate function that has an alias
in the FROM clause of the outer query name. That alias can then be referred
to in the outer query

FROM
(SELECT ;I\VG(STANDARD PRICE) AVGPRICE|FROM PRODUCT T)
PRODUCT T
WHERE|STANDARD_PRICE > AVG_PRICE;

The WHERE clause normally cannot include aggregate functions, but because the aggregate is
performed in the subquery its result can be used in the outer query’s WHERE clause

’

o

COP 4710: Database Systems (Chapter 5) Page 17 Mark Llewellyn

e

)

SQL Join Operations

The SQL join operations merge rows from two tables and
returns the rows that:

1. Have common values in common columns (natural join) or,
2. Meet a given join condition (equality or inequality) or,

3. Have common values in common columns or have no matching
values (outer join).

We’ve already examined the basic form of an SQL join
which occurs when two tables are listed in the FROM clause
and the WHERE clause specifies the join condition.

An example of this basic form of the join is shown on the
next page.

P
COP 4710: Database Systems (Chapter 5) Page 18 Mark Llewellyn @]

SQL Join Operations (cont.)

SELECT P_CODE, P_DESCRIPT, P_PRICE, V_NAME
FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE;
The FROM clause indicates which tables are to be joined. If

three or more tables are specified, the join operation takes
place two tables at a time, starting from left to right.

The join condition is specified in the WHERE clause. In the
example, a natural join is effected on the attribute V_CODE.

The SQL join syntax shown above is sometimes referred to
as an “old-style” join.

The tables on pages 55 and 56, summarize the SQL join
operations.

o
COP 4710: Database Systems (Chapter 5) Page 19 Mark Llewellyn g);

SQL Cross Join Operation

« A cross join In SQL Is equivalent to a Cartesian
product In standard relational algebra. The cross
join syntax Is:

SELECT column-list
FROM tablel, table2;

SELECT column-list _

FROM tablel CROSS JOIN table2;

A

old style syntax

A

COP 4710: Database Systems (Chapter 5) Page 20 Mark Llewellyn 0

SQL Natural Join Operation

e The natural join syntax Is:

SELECT column-list « _

FROM tablel NATURAL JOIN table2;

e The natural join will perform the following tasks:

— Determine the common attribute(s) by looking for
attributes with identical names and compatible data types.

— Select only the rows with common values in the common
attribute(s).

— If there are no common attributes, return the cross join of
the two tables.

e
,

COP 4710: Database Systems (Chapter 5) Page 21 Mark Llewellyn |

SQL Natural Join Operation (cont)

The syntax for the old-style natural join is:

SELECT column-list
FROM tablel, table2
WHERE tablel.C1 = table2.C2;

old style syntax

One important difference between the natural join
and the “old-style” syntax is that the natural join
does not require the use of a table qualifier for the
common attributes. The two SELECT statements
shown on the next page are equivalent.

P
COP 4710: Database Systems (Chapter 5) Page 22 Mark Llewellyn @]

SQL Natural Join Operation (cont)

COP 4710: Database Systems (Chapter 5 Page 23 Mark Llewellyn ﬂ.

Join With Using Clause

« A second way to express a join Is through the
USING keyword. This query will return only the
rows with matching values in the column indicated
In the USING clause. The column listed in the
USING clause must appear in both tables.

 The syntax Is:

SELECT column-list

FROM tablel JOIN table2 USING (common-column);

P
COP 4710: Database Systems (Chapter 5) Page 24 Mark Llewellyn @]

Join With Using Clause (cont.)

An example:

SELECT INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS,
LINE_PRICE
FROM INVOICE JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE);

As was the case with the natural join command, the
JOIN USING does not required the use of qualified
names (qualified table names). In fact, Oracle 9i
will return an error If you specify the table name In
the USING clause.

P
COP 4710: Database Systems (Chapter 5) Page 25 Mark Llewellyn g);

Join On Clause

Both the NATURAL JOIN and the JOIN USING commands
use common attribute names in joining tables.

Another way to express a join when the tables have no
common attribute names is to use the JOIN ON operand.
This query will return only the rows that meet the indicated
condition. The join condition will typically include an
equality comparison expression of two columns. The
columns may or may not share the same name, but must
obviously have comparable data types.

The syntax Is:
SELECT column-list

FROM tablel JOIN table2 ON join-condition;

P
COP 4710: Database Systems (Chapter 5) Page 26 Mark Llewellyn g);

Join On Clause (cont)

An example:

SELECT INVOICE.INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE
FROM INVOICE JOIN LINE ON INVOICE.INV_NUMBER = LINE.INV_NUMBER
JOIN PRODUCT ON LINE.P_CODE = PRODUCT.P_CODE;

Notice In the example query, that unlike the NATURAL
JOIN and the JOIN USING operation, the JOIN ON clause
requires the use of table qualifiers for the common attributes.
If you do not specify the table qualifier you will get a
“column ambiguously defined” error message.

Keep in mind that the JOIN ON syntax allows you to
perform a join even when the tables do not share a common
attribute name.

P
COP 4710: Database Systems (Chapter 5) Page 27 Mark Llewellyn g);

Join On Clause (cont)

shown below which utilizes the JOIN ON clause.

SELECT E.EMP_MGR, M.EMP_LNAME, E.EMP_NUM, E.EMP_LNAME
FROM EMP E JOIN EMP M ON E.EMP_MGR = M.EMP_NUM
ORDER BY E.EMP_MGR;

COP 4710: Database Systems (Chapter 5) Page 28 Mark Llewellyn

e For example, to general a list of all employees with
the manager’s name you can use the recursive query

Outer Joins

We saw the forms for the LEFT OUTER JOIN and the
RIGHT OUTER JOIN in the previous set of notes.

There Is also a FULL OUTER JOIN operation in SQL. A
full outer join returns not only the rows matching the join
condition (that is, rows with matching values in the common
column(s)), but also all the rows with unmatched values In
either side table.

The syntax of a full outer join is:

SELECT column-list
FROM tablel FULL [OUTER] JOIN table2 ON join-condition;

o
COP 4710: Database Systems (Chapter 5) Page 29 Mark Llewellyn g);

Outer Joins (cont)

The following example will list the product code,
vendor code, and vendor name for all products and
Include all the product rows (products without
matching vendors) and also all vendor rows
(vendors without matching products):

SELECT P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR FULL OUTER JOIN PRODUCT
ON VENDOR.V_CODE = PRODUCT.V_CODE;

o
COP 4710: Database Systems (Chapter 5) Page 30 Mark Llewellyn g);

Su

mmary of SQL JOIN Operations

FROM T1 JOIN T2
ONT1.C1=T2.C1

Join Join Type SQL Syntax Example Description
Classification
Cross CROSS SELECT * Old style. Returns the Cartesian product of T1 and
JOIN FROM T1, T2; T2
SELECT * New style. Returns the Cartesian product of T1 and
FROM T1 CROSS JOINT2; | T2
Inner Old Style SELECT * Returns only the rows that meet the join condition in
JOIN FROM T1, T2 the WHERE clause — old style. Only rows with
WHERE T1.C1 = T2.C1 matching values are selected.
NATURAL SELECT * Returns only the rows with matching values in the
JOIN FROM T1 NATURAL JOIN matching columns. The matching columns must
T2 have the same names and similar data types.
JOIN USING | SELECT * Returns only the rows with matching values in the
FROM T1 JOIN T2 USING columns indicated in the USING clause.
(C1)
JOIN ON SELECT * Returns only the rows that meet the join condition

indicated in the ON clause.

Page 31

Mark Llewellyn

e

COP 4710: Database Systems (Chapter 5)

Summary of SQL JOIN Operations (cont.)

Join Join Type SQL Syntax Example Description
Classification
Outer LEFT JOIN SELECT * Returns rows with matching values and includes all
FROM T1 LEFT OUTER rows from the left table (T1) with unmatched values.
JOIN T2
ONT1.C1=T2.C1
RIGHT JOIN | SELECT * Returns rows with matching values and includes all
FROM T1 RIGHT OUTER rows from the right table (T2) with unmatched
JOIN T2 values.
ONT1.C1=T2.C1
FULL JOIN SELECT * Returns rows with matching values and includes all
FROM T1 FULL OUTER rows from both tables (T1 and T2) with unmatched
JOIN T2 values.
ONT1.C1=T2.C1

|

COP 4710: Database Systems (Chapter 5) Page 32 Mark Llewellyn %}J

Subqueries and Correlated Queries

The use of joins allows a RDBMS go get information from
two or more tables. The data from the tables Is processed
simultaneously.

It is often necessary to process data based on other processed
data. Suppose, for example, that you want to generate a list
of vendors who provide products. (Recall that not all
vendors in the VENDOR table have provided products —
some of them are only potential vendors.)

The following query will accomplish our task:

SELECT V_CODE, V_NAME
FROM VENDOR
WHERE V_CODE NOT IN (SELECT V_CODE FROM PRODUCT);

P
COP 4710: Database Systems (Chapter 5) Page 33 Mark Llewellyn g);

Subqueries and Correlated Queries (cont.)

A subquery is a query (SELECT statement) inside a query.
A subquery is normally expressed inside parentheses.

The first query In the SQL statement is known as the outer
query.

The second query in the SQL statement is known as the inner
query.

The inner query Is executed first.

The output of the inner query is used as the input for the
outer query.

The entire SQL statement Is sometimes referred to as a
nested query.

P
COP 4710: Database Systems (Chapter 5) Page 34 Mark Llewellyn @]

Subqueries and Correlated Queries (cont.)

A subguery can return:

1. One single value (one column and one row). This subquery can be
used anywhere a single value is expected. For example, in the right
side of a comparison expression.

2. A list of values (one column and multiple rows). This type of
subqguery can be used anywhere a list of values is expected. For
example, when using the IN clause.

3. A virtual table (multi-column, multi-row set of values). This type of
subquery can be used anywhere a table is expected. For example, iIn
the FROM clause.

4. No value at all, i.e., NULL. In such cases, the output of the outer
query may result in an error or null empty set, depending on where
the subquery is used (in a comparison, an expression, or a table set).

P
COP 4710: Database Systems (Chapter 5) Page 35 Mark Llewellyn @]

Correlated Queries

A correlated query (really a subquery) is a subquery that contains a
reference to a table that also appears in the outer query.

A correlated query has the following basic form:

SELECT * FROM tablel WHERE coll = ANY
(SELECT coll FROM table2
WHERE table2.col2 = tablel.coll);

Notice that the subquery contains a reference to a column of tablel,
even though the subquery’s FROM clause doesn’t mention tablel.

Thus, query execution requires a look outside the subquery, and finds the
table reference in the outer query.

P
COP 4710: Database Systems (Chapter 5) Page 36 Mark Llewellyn §_ﬁ

WHERE Subqueries

The most common type of subguery uses an inner SELECT
subquery on the right hand side of a WHERE comparison

expression.

For example, to find all products with a price greater than or
equal to the average product price, the following query
would be needed:

SELECT P_CODE, P_PRICE
FROM PRODUCT
WHERE P_PRICE >= (SELECT AVG(P_PRICE)
FROM PRODUCT);

P
COP 4710: Database Systems (Chapter 5) Page 37 Mark Llewellyn @]

WHERE Subqueries (cont.)

Subqueries can also be used in combination with joins.

The query below lists all the customers that ordered the
product “Claw hammer”.

COP 4710: Database Systems (Chapter 5 Page 38 Mark Llewellyn ﬂ.

WHERE Subqueries (cont.)

 Notice that the previous query could have been written as:
SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS_FNAME
FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)
JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE)
WHERE P_DESCRIPT = ‘Claw hammer’);

e However, what would happen if two or more product
descriptions contain the string “Claw hammer”?

— You would get an error message because only a single
value is expected on the right hand side of this expression.

P
COP 4710: Database Systems (Chapter 5) Page 39 Mark Llewellyn g);

IN Subqgueries

« To handle the problem we just saw, the IN operand must be
used.

e The query below lists all the customers that ordered any Kkind
of hammer or saw.

COP 4710: Database Systems (Chapter 5 Mark Llewellyn m.

HAVING Subqgueries

It is also possible to use subqueries with a HAVING clause.

Recall that the HAVING clause is used to restrict the output
of a GROUP BY query by applying a conditional criteria to
the grouped rows.

For example, the following query will list all products with
the total quantity sold greater than the average quantity sold.

SELECT DISTINCT P_CODE, SUM(LINE_UNITS)
FROM LINE
GROUP BY P_CODE
HAVING SUM(LINE_UNITS) > (SELECT AVG(LINE_UNITS)
FROM LINE);

P
COP 4710: Database Systems (Chapter 5) Page 41 Mark Llewellyn g);

Multi-row Subquery Operators: ANY and ALL

The IN subquery uses an equality operator; that is, it only
selects those rows that match at least one of the values in the
list. What happens if you need to do an inequality
comparison of one value to a list of values?

For example, suppose you want to know what products have
a product cost that is greater than all individual product costs
for products provided by vendors from Florida.

SELECT P_CODE, P_ONHAND*P_PRICE
FROM PRODUCT
WHERE P_ONHAND*P_PRICE > ALL (SELECT P_ONHAND*P_PRICE
FROM PRODUCT
WHERE V_CODE IN (SELECT V_CODE
FROM VENDOR
WHERE V_STATE= ‘FL"));

P
COP 4710: Database Systems (Chapter 5) Page 42 Mark Llewellyn g'/

FROM Subqgueries

In all of the cases of subqueries we’ve seen so far, the subquery was part
of a conditional expression and it always appeared on the right hand side
of an expression. This is the case for WHERE, HAVING, and IN
subqueries as well as for the ANY and ALL operators.

Recall that the FROM clause specifies the table(s) from which the data
will be drawn. Because the output of a SELECT statement is another
table (or more precisely, a “virtual table”), you could use a SELECT
subquery in the FROM clause.

For example, suppose that you want to know all customers who have
purchased products 13-Q2/P2 and 23109-HB. Since all product
purchases are stored in the LINE table, it is easy to find out who
purchased any given product just by searching the P_CODE attribute in
the LINE table. However, in this case, you want to know all customers
who purchased both, not just one.

The query on the next page accomplishes this task.

P
COP 4710: Database Systems (Chapter 5) Page 43 Mark Llewellyn @]

FROM Subqueries (cont.)

COP 4710: Database Systems (Chapter 5 Page 44 Mark Llewellyn [3-

Subqueries in MySQL

The ability to handle subqueries like we’ve just examined
was not available in MySQL until version 4.1.

If you are using a version of MySQL earlier than 4.1 you will
need to download the latest version (5.0) before you begin to
work on the next assignment which will involve the

execution of subqueries.

There are a number of other enhancements that became
active with version 4.1 that are extremely useful and we will
examine a number of these over the coming days.

COP 4710: Database Systems (Chapter 5)

Page 45

Mark Llewellyn

|

Subqgueries in MySQL (cont)

e Subqueries are also useful in optimizing queries as they can
be used to eliminate more costly join operations.

e Consider the following general query:

SELECT DISTINCT tablel.coll
FROM tablel, table2
WHERE tablel.coll = table2.col1;

« This query can be more efficiently expressed using
subqueries as:

SELECT DISTINCT coll

FROM tablel

WHERE tablel.coll IN (SELECT coll
FROM table2);

—?L

COP 4710: Database Systems (Chapter 5) Page 46 Mark Llewellyn @j

END }

Conditional Expressions Using Case Syntax

This Is available with CASE conditional syntax
newer versions of SQL, (CASE expression
previously not part of (WHEN expression
the standard THEN {expression | NULL}} . ..

| {WHEN predicate
THEN {expression | NULL}}. ..

[ELSE {expression NULL}]

| (NULLIF (expression, expression) }
| (COALESCE (expression. . .) }

COP 4710: Database Systems (Chapter 5) Page 47 Mark Llewellyn e

Ensuring Transaction Integrity

« Transaction = A discrete unit of work that must be
completely processed or not processed at all
— May involve multiple updates

— If any update fails, then all other updates must be cancelled
e SQL commands for transactions

« BEGIN TRANSACTION/END TRANSACTION

— Marks boundaries of a transaction

— COMMIT
« Makes all updates permanent

— ROLLBACK
» Cancels updates since the last COMMIT

COP 4710: Database Systems (Chapter 5) Page 48 Mark Llewellyn

An SQL Transaction sequence (in pseudocode)

BEGIN transaction
INSERT Order ID, Order date, Customer ID into Order t;

INSERT Order ID, Product ID, Quantity inte Order line t;
INSERT Order ID, Product ID, Quantity into Order line t;
INSERT Order ID, Product ID, Quantity into Order line t;

END transaction

Invalid Product 1D entered
Valid information inserted.

COMMIT work Transaction will be ABORTED.
ROLLBACK all changes made to Order_t

All changes to data v

are made permanent. All changes made to Order_t

and Order_line_t are removed.
Database state is just as it was
before the transaction began.

COP 4710: Database Systems (Chapter 5) Page 49 Mark Llewellyn

Data Dictionary Facilities

o System tables that store metadata
o Users usually can view some of these tables
« Users are restricted from updating them
e Examples in Oracle 9i
— DBA_TABLES - descriptions of tables
— DBA_CONSTRAINTS - description of constraints
— DBA_USERS - information about the users of the system
« Examples in Microsoft SQL Server
— SYSCOLUMNS - table and column definitions

— SYSDEPENDS - object dependencies based on foreign keys
— SYSPERMISSIONS - access permissions granted to users

COP 4710: Database Systems (Chapter 5) Page 50 Mark Llewellyn

SQL:2003

Enhancements/Extensions

User-defined data types (UDT)

— Subclasses of standard types or an object type

Analytical functions (for OLAP)

Persistent Stored Modules (SQL/PSM)

— Capability to create and drop code modules

— New statements:
e CASE, IF, LOOP, FOR, WHILE, etc.
« Makes SQL into a procedural language

Oracle has propriety version called PL/SQL, and

Microsoft SQL Server has Transact/SQL

COP 4710: Database Systems (Chapter 5) Page 51

Mark Llewellyn

Routines and Triggers

 Routines
— Program modules that execute on demand

— Functions — routines that return values and take
Input parameters

— Procedures — routines that do not return values
and can take input or output parameters

e Triggers

— Routines that execute In response to a database
event (INSERT, UPDATE, or DELETE)

COP 4710: Database Systems (Chapter 5) Page 52 Mark Llewellyn

Triggers contrasted with stored procedures

routine! - Procedures are called explicitly

Call Stored |,
Procedure_name *| Procedure |. . returns value
(parameter_value:) ., as performs
S, routine
. . - \\ ‘\\'
Explicit execufion code AN
K"‘x‘:‘x
-'.’
TRIGGER!
_I-f'i_ff Database
Insert -
- rigger
Update 99 // performs
Delete / / trigger action
Implicit execution code F

Triggers are event-driven

COP 4710: Database Systems (Chapter 5) Page 53 Mark Llewellyn

Oracle PL/SQL trigger syntax

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE AFTER} {INSERT | DELETE | UPDATE} ON table_name
[FOR EACH ROW [WHEN (trigger_condition)]]
trigger_body_here;

SQL.:2003 Create routine syntax

[CREATE PROCEDURE | CREATE FUNCTION} routine_name
([parameter [{,parameter} . . .]])

[RETURNS data_type result_cast] /* for functions only */

[LANGUAGE {ADA |C|COBOL |FORTRAN | MUMPS | PASCAL | PLI | SQL}]
[PARAMETER STYLE {SOL | GENERAL}]

[SPECIFIC specific_name]

[DETERMINISTIC | NOT DETERMINISTIC]

[NO SQL | CONTAINS SQOL | READS SQOL DATA | MODIFIES SQL DATA]
[RETURN NULL ON NULL INPUT | CALL ON NULL INPUT]

[DYNAMIC RESULT SETS unsigned_integer] /* for procedures only */
[STATIC DISPATCH] /* for functions only */
routine_body

COP 4710: Database Systems (Chapter 5) Page 54 Mark Llewellyn

Embedded and Dynamic SQL

 Embedded SQL

— Including hard-coded SQL statements In a program

written in another language such as C or Java
e Dynamic SQL

— Ability for an application program to generate
SQL code on the fly, as the application is running

COP 4710: Database Systems (Chapter 5) Page 55 Mark Llewellyn

